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Abstract

This paper specifically considers the generation of steady streaming induced by g-jitter on double diffusion from a
sphere immersed in a viscous and incompressible fluid. The governing equations of motion are first written in dimen-
sionless forms and the resulting equations obtained after the introduction of the stream function are solved analytically
and numerically. Analytical results using the matched asymptotic method are presented for the case when the Reynolds
number, Re, is small (Re� 1), while numerical results using the Keller-box method are given for (Re � 1), or the
boundary layer approximation. Both the cases of assisting and opposing thermal and concentration buoyancies are con-
sidered. Table and graphical results for the skin friction and heat and mass transfer from the sphere are presented and
discussed for various parametric physical conditions. It is shown that for opposing buoyant forces the skin friction and
heat and mass transfer rates follow complex trends depending on the buoyant ratio parameter, Prandtl and Schmidt
numbers.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Various studies to investigate the effect of g-jitter,
which is a term to describe fluctuating gravitational
fields induced by machine vibrations and crew motions
onboard a spacecraft have been addressed recently.
For example, Alexander [1] carried out a numerical
investigation on the effect of g-jitter on dopant conc-
entration in a modeled crystal growth reactor. He
concluded that low-frequency g-jitter can have a signifi-
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cant effect on dopant concentration. Li [2,3], Pan and Li
[4], Suresh et al. [5] and Chamkha [6] reported analytical
results for the g-jitter induced flows in microgravity un-
der the influence of a transverse magnetic field for a sim-
ple system consisting of two vertical plates held at
different temperatures. Results showed that the g-jitter
frequency, applied magnetic field and temperature gradi-
ents all contribute to affect the convective flow. Rees and
Pop [7–9] discussed g-jitter induced free convection ef-
fects in porous media and in viscous and incompressible
fluids (non-porous media) were under the boundary
layer approximation. Biringen and Danabasoglu [10]
solved the full non-linear, time-dependent Boussinesq
equations for g-jitter in a rectangular cavity. Their
results showed the response to consist of a harmonic
ed.
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Nomenclature

a radius of a sphere
C concentration
C1 ambient concentration
g* g-jitter gravity field
g0 magnitude of g-jitter
k unit vector pointing vertically upward
N buoyancy ratio parameter
p non-dimensional pressure
p1 ambient pressure
Pr Prandtl number
qw wall heat flux
r non-dimensional radial coordinate
Re Reynolds number
t non-dimensional time
T non-dimensional fluid temperature
T1 ambient temperature
Uc characteristic velocity
vr, vh non-dimensional velocity components along

r and h axes
v non-dimensional velocity vector

Greek symbols

bC concentration expansion coefficient
bT thermal expansion coefficient
h polar angle
g, g non-dimensional inner variables
t kinematic viscosity
e non-dimensional small quantity
w non- dimensional stream function
x* frequency of g-jitter oscillation

Superscripts

* dimensional variables
0 differentiation with respect to g
s denotes steady part of the solution
u denotes unsteady part of the solution

Subscripts

w condition at the wall
1 ambient condition
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time-dependent component superposed over a steady
streaming. The results of Farooq and Homsy [11,12]
were complementary to those reported by Biringen and
Danabasoglu [10], since by a weakly non-linear calcula-
tion, Farooq and Homsy [11,12] were able to explore
parametric dependencies that explain physical mecha-
nism and scaling.

All these studies have shed some light on the basic
nature of g-jitter effects and have provided a thrust to
devise useful mechanism by which the g-jitter induced
convective flows may be suppressed. Also a fundamental
understanding of some isolated aspects of fluid dynamic
systems in an unsteady gravitational environment has
been given. Given that perturbed accelerations exist in
the microgravity environment, an estimation of the crit-
ical frequency ranges that drive a significant amount of
convective motion, critical directions of modulation,
and effects of random forcing have been estimated.
Although these studies are useful in illustrating the basic
features of g-jitter induced convection in a single compo-
nent system, very little information seems to be available
on the fundamental understanding of double diffusive
convection in a microgravity environment [13].

In this paper, we consider the effect of g-jitter on the
problem of double diffusion from an isothermal sphere
that is immersed in a viscous and incompressible fluid.
Double diffusive convection is referred to fluid flow gen-
erated by combined temperature and concentration gra-
dients. It occurs in a wide range of scientific fields such
as oceanography, astrophysics, geology, biology and
chemical processes [14]. The study of double diffusion
convection can be of critical importance in binary alloy
solidification systems, because the quality of the final
products is strongly correlated to the concentration dis-
tribution in the melt during processing.

Shu et al. [13] presented a numerical analysis of dou-
ble diffusive convection induced by g-jitter in a cavity.
Extensive simulations were carried out for temperature
distribution and solutal (concentration) transport alloy
system in space flights. The computations using finite
element include the use of idealized single-frequency
and multi-frequency g-jitter as well as real g-jitter data.
These numerical results indicate that with an increase
in g-jitter force (or amplitude), the non-linear convective
effects become much more obvious, which in turn dras-
tically change the concentration fields.

Our present work involves the generation of steady
streaming for a double diffusion by natural convection
from a sphere placed in a viscous and incompressible
fluid under the influence of g-jitter of high frequency.
The methodology here follows closely that of Amin
[15] who investigated the heat transfer from a sphere im-
mersed in an infinite fluid medium in a zero-gravity envi-
ronment under the influence of g-jitter. Analytical
results are presented for the case when the Reynolds
number, Re, is small (Re� 1) and the Prandtl and
Schmidt numbers are of O(1). Further, for the case
(Re � 1), or the boundary layer approximation, and
the Prandtl and Schmidt numbers are of O(1), numerical
solutions are obtained using a very efficient implicit fi-
nite-difference method known as Keller-box method.
The cases for assisting and opposing thermal and
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concentration buoyancies are also considered. The con-
clusion is that heat and mass transfer are negligible for
high-frequency g-jitter but under special circumstances,
when the Prandtl number and Schmidt numbers are high
enough, low-frequency g-jitter may play an important
role. It should be noticed that when the buoyancy forces
due to the concentration are absent (N = 0), the solution
of the heat transfer problem due to Amin [15] is
recovered.
2. Basic equations

Consider the combined heat and mass transfer by
natural convection from a fixed sphere of radius a im-
mersed that is placed in a viscous and incompressible
Boussinesq fluid, which is at uniform temperature, T1,
and concentration, C1, respectively. We assume that
the sphere is placed in a fluctuating gravitational field
g�(t�)k, where k is the unit vector pointing vertically up-
ward, t� is the time and we assume that
g�ðt�Þ ¼ g0 cosðx�t�Þ, where g0 is the magnitude of the
g-jitter and x� is the frequency of the g-jitter oscillation
which is assumed very high (x� � 1). It is also assumed
that the sphere is subjected to a constant temperature,
Tw (>T1), and a constant concentration, Cw (>C1),
respectively. The g-jitter induced free convection is de-
scribed by the continuity, Navier–Stokes, energy and
concentration equations, which following Amin [15]
can be written in non-dimensional form as

r � v ¼ 0 ð1Þ
ov

ot
þ eðv � rÞv ¼ �rp þ e

Re
r2vþ ðT þ NCÞðcos tÞk ð2Þ

oT
ot

þ eðv � rÞT ¼ e
PrRe

r2T ð3Þ

oC
ot

þ eðv � rÞC ¼ e
ScRe

r2C ð4Þ

where t is the non-dimensional time, v is the non-dimen-
sional velocity vector, T is the non-dimensional fluid
temperature, C is the non-dimensional concentration, p
is the non-dimensional pressure, and Pr and Sc are the
Prandtl and Schmidt numbers, respectively. The non-
dimensional quantities are introduce in the form

t ¼ xt�; r ¼ r�=a; v ¼ v�=U c

T ¼ ðT � � T1Þ=ðT w � T1Þ
C ¼ ðC� � C1Þ=ðCw � C1Þ
p ¼ ðp� � p1Þ=ðqaxU cÞ

ð5Þ

Further, Uc is the characteristic velocity, Re is the Rey-
nolds number, e is a dimensionless small parameter
(e � 1) andN is the buoyancy ratio, which are defined as

U c ¼ gbT ðT w � T1Þ=x�; Re ¼ U ca=t; e ¼ U c=ax
�

N ¼ bCðCw � C1Þ=bT ðT w � T1Þ ð6Þ
with t being the kinematic viscosity, and bT and bC are
the coefficients of thermal and concentration expan-
sions, respectively. With reference to spherical polar
coordinates (r,h,/) with h = 0 corresponding to the
direction of k, we have for axisymmetric flow,
v = (vr,vh, 0).

If we define the stream function w such that

vr ¼
1

r2 sin h
ow
oh

; vh ¼ � 1

r sin h
ow
or

ð7Þ

Eqs. (1)–(3) can then be written as

o

ot
ðD2wÞ þ e

1

r2
oðw;D2wÞ
oðr; lÞ þ 2

r2
D2wL1w

� �

¼ e
Re

D4wþ ð1� l2ÞðL2T þ NL2CÞ cos t ð8Þ

oT
ot

þ e
r2

oðw; T Þ
oðr; lÞ ¼ e

RePr
D2T þ 2

r2
L2T

� �
ð9Þ

oC
ot

þ e
r2

oðw;CÞ
oðr; lÞ ¼ e

ReSc
D2C þ 2

r2
L2C

� �
ð10Þ

where

D2 ¼ o2

or
þ ð1� l2Þ

r2
o2

ol2
; L1 ¼

l
1� l2

o

or
þ 1

r
o

ol
;

L2 ¼ r
o

or
� l

o

ol
ð11Þ

and l ¼ cos h. These equations are solved under the fol-
lowing boundary conditions

w ¼ ow
or

¼ 0; T ¼ 1; C ¼ 1 on r ¼ 1 ð12aÞ

w ¼ oðr2Þ; T ! 0; C ! 0 as r ! 1 ð12bÞ

In order to solve Eqs. (8)–(10) subject to the bound-
ary conditions (12), we shall follow the method of
matched asymptotic method as used by Amin [15],
namely, that the flow region is divided into an inner
layer close to the sphere, where the viscous terms of
Eq. (8) become important, and an outer layer, where
the viscous terms of Eq. (8) are neglected, respectively.
It is to be mentioned that the outer flow region is non-
conservative, i.e. the flow is rotational in the present
problem. Both the inner and outer flow and heat and
mass transfer fields are determined simultaneously.
The outer solutions satisfy the boundary conditions at
infinity. The inner solutions, solved in a stretched coor-
dinate, satisfy the boundary conditions on the sphere
surface. These two solutions obtained in the inner and
outer regions are then matched on the interface of these
regions. All the unknowns will be determined by match-
ing. From the usual boundary layer arguments it results
in that the small non-dimensional parameter used to ob-
tain solutions in this problem is e/Re (�1) because the
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thickness of the inner layer, or Stokes layer, is O(e/Re)1/2.
It is worth pointing out that this method has been pro-
posed by Amin [15] to study the heat transfer from an
isothermal sphere induced by g-jitter when the buoyancy
forces due to mass concentration are absent (N = 0). It
has been shown by Amin [15] that the parameter e/Re
(�1) captures very well the physics of the phenomena.
Solutions for (Re� 1) with Pr = O(1) and Sc = O(1),
and (Re� 1) with Pr = O(1) and Sc = O(1), respec-
tively, will be considered.
3. Solution for Re << 1, Pr = O(1) and Sc = O(1)

For the flow outside the boundary layers, or outer
flow region that is rotational in this problem, the stream
function w and temperature T and concentration C have
to be expanded as

v ¼ v00 þ Rev01 þ Re2v02 þ � � �

þ e
Re

� �1=2
ðv10 þ Rev11 þ Re2v12Þ þ � � �

þ e
Re

� �
ðv20 þ Rev21 þ Re2v22 þ � � �Þ þ � � � ð13Þ

where v denotes w, T or C. On the other hand, the vari-
ables for the inner layers are

W ¼ Re
2e

� �1=2

w; I ¼ T ; U ¼ C;

g ¼ Re
2e

� �1=2

ðr � 1Þ ð14Þ

Substituting (14) into (8)–(10), we obtain equations for
the inner layer, or Stokes layer, which can be written as

o

ot
ðD2WÞ þ e

2e
Re

� �1
2

1� 2
2e
Re

� �1
2

gþ � � �
( )

� oðW;D2WÞ
oðg; lÞ þ 2D2WL3W

� �

¼ 1

2
D4Wþ ð1� l2Þ cos tL4I ð15Þ

oI

ot
þ e

2e
Re

� �1
2

1� 2
2e
Re

� �1
2

gþ � � �
( )

oðW;IÞ
oðg; lÞ

¼ 1

2Pr
D2Iþ 2

2e
Re

� �1
2

1� 2
2e
Re

� �1
2

gþ � � �
( )

L4I

" #

ð16Þ

oU
ot

þ e
2e
Re

� �1
2

1� 2
2e
Re

� �1
2

gþ � � �
( )

oðW;UÞ
oðg; lÞ

¼ 1

2Sc
D2Uþ 2

2e
Re

� �1
2

1� 2
2e
Re

� �1
2

gþ � � �
( )

L4U

" #

ð17Þ
where

D2 ¼ o2

og2
þ 2e

Re

� �
ð1� l2Þ 1� 2

2e
Re

� �1
2

gþ � � �
( )

o2

ol2

L3 ¼
l

1� l2

o

og
þ 2e

Re

� �1
2

1� 2e
Re

� �1
2

gþ � � �
( )

o

ol

L4 ¼ 1þ 2e
Re

� �1
2

g

( )
o

og
� 2e

Re

� �1
2

l
o

ol
ð18Þ

The expansions for W, I and U in the inner layer have
the same form as in (13).

(i) Solution at O(Re0)
To leading order, from Eqs. (8)–(10) and (15)–(17),

we get the following equations for the outer and inner
variables

oT 00

ot
¼ 0;

oC00

ot
¼ 0 ð19a;bÞ

oD2w00

ot
¼ ð1� l2ÞðL2T 00 þ NL2C00Þ cos t ð19cÞ

oI00

ot
¼ 1

2Pr
o2I00

og2
;

oU00

ot
¼ 1

2Sc
o2U00

og2
ð20a;bÞ

oD2W00

ot
¼ 1

2

o4W00

og4
þ ð1� l2Þ oI00

og
þ N

oU00

og

� �
cos t

ð20cÞ

The solutions of Eqs. (20) which satisfy the boundary
conditions (12a) are

I
ðsÞ
00 ¼ 1þ a00g; UðsÞ

00 ¼ 1þ b00g ð21Þ

WðuÞ
00 ¼ c00ð1þ iÞ g� ð1� iÞ

2
½1� e�ð1þiÞg�

� �
ð1� l2Þeit

ð22Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary unity. Here and in what

follows, superscripts (s) and (u) are used to indicate the
time-independent, or steady, and time-dependent, or un-
steady components of the solution at each stage. In (21)
it has been anticipated that the temperature and concen-
tration will be steady at leading order, as dictated by the
boundary condition (12a), so that the flow driven by the
fluctuating gravitational field will be unsteady. We no-
tice that the right-hand side of Eq. (19c) cannot be fully
determined at this stage because Eqs. (19a,b) merely

indicate that T 00 ¼ T ðsÞ
00 and C00 ¼ CðsÞ

00 . To deter-

mine T ðsÞ
00 and CðsÞ

00 we need to consider terms of relative
order e/Re in Eqs. (9) and (10). Thus, from the terms
of O(e/Re), we have

oT 20

ot
¼ 1

Pr
D2T ðsÞ

00 þ
2

r2
L2T

ðsÞ
00

� �
ð23Þ

oC20

ot
¼ 1

Sc
D2CðsÞ

00 þ
2

r2
L2C

ðsÞ
00

� �
ð24Þ
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If we now separate the unsteady and steady parts of (23)

and (24), we have as the equations for T ðsÞ
00 and CðsÞ

00 ,

D2T ðsÞ
00 þ

2

r2
L2T

ðsÞ
00 ¼ 0 ð25Þ

D2CðsÞ
00 þ

2

r2
L2C

ðsÞ
00 ¼ 0 ð26Þ

Matching the solutions of (25) and (26) with (21) re-
quires a00 = b00 = 0 and T ðsÞ

00 ¼ CðsÞ
00 ¼ 1

r. If we use further
the matching principle for Eqs. (19c) and (22), we get
c00 = �(1 + i)(1 + N)/2, so that we have at O(1),

wðuÞ
00 ¼ � i

2
ð1� l2Þð1þ NÞ r � 1

r

� �
eit

WðuÞ
00 ¼ �i g� ð1� iÞ

2
½1� e�ð1þiÞg�

� �
ð1� l2Þð1þ NÞeit;

WðsÞ
00 ¼ wðsÞ

00 ¼ 0; T ðsÞ
00 ¼ 1

r
; I

ðsÞ
00 ¼ 1;

CðsÞ
00 ¼ 1

r
; UðsÞ

00 ¼ 1 ð27Þ

(ii) Solution at O(Re)
We notice from (27) that there is no time-indepen-

dent flow induced at this leading order. With the solu-
tion at the leading order complete, we next consider
the term O(Re) in the series (13). The corresponding
equations for O(Re) terms are

oT 01

ot
¼ 0 ð28Þ

oC01

ot
¼ 0 ð29Þ

oD2w01

ot
¼ ð1� l2ÞðL2T 01 þ NL2C01Þ cos t ð30Þ

for the outer layer and

oI01

ot
¼ 1

2Pr
o2I01

og2
ð31Þ

oU01

ot
¼ 1

2Sc
o2U01

og2
ð32Þ

o

ot
o
2W01

og2

� �
¼ 1

2

o
4W01

og4
þ ð1� l2Þ oI01

og
þ N

oU01

og

� �
cos t

ð33Þ

for the inner layer, respectively.
Eqs. (28) and (29) imply that T 01 ¼ T ðsÞ

01 and C01 ¼
CðsÞ

01 , while (30) provides an equation for wðuÞ
01 . To com-

plete the right-hand side of (30), we consider the term
of relative order O((e/Re)Re) in Eqs. (9) and (10). Thus,
the term O(e) gives
oT 21

ot
þ 1

r2
ow00

or
oT 00

ol
� ow00

ol
oT 00

or

� �

¼ 1

Pr
D2T 01 þ

2

r2
L2T 01

� �
ð34Þ

oC21

ot
þ 1

r2
ow00

or
oC00

ol
� ow00

ol
oC00

or

� �

¼ 1

Sc
D2C01 þ

2

r2
L2C01

� �
ð35Þ

As before, the equations for T01 and C01 become, after
we separate the steady and unsteady components of
Eqs. (34) and (35),

D2T ðsÞ
01 þ

2

r2
L2T

ðsÞ
01 ¼ 0 ð36Þ

D2CðsÞ
01 þ

2

r2
L2C

ðsÞ
01 ¼ 0 ð37Þ

Solutions of Eqs. (31) and (32) for the inner region

care simply I
ðsÞ
01 ¼ a01g and UðsÞ

01 ¼ b01g, where a01 and
b01 are constants and matching it with the outer solu-
tions give I

ðsÞ
01 ¼ a01 ¼ 0 and UðsÞ

01 ¼ b01 ¼ 0. It follows
immediately from (36) and (37) that

T ðsÞ
01 ¼ CðsÞ

01 ¼ 0 ð38Þ

The equations for wðuÞ
01 and WðuÞ

01 are now

D2wðuÞ
01 ¼ 0 ð39Þ

o

ot
o2WðuÞ

01

og2

 !
� 1

2

o4WðuÞ
01

og4

 !
¼ 0 ð40Þ

and the solution of these equations, with the homoge-
neous boundary conditions (12), is simply

wðuÞ
01 ¼ WðuÞ

01 ¼ 0 ð41Þ

To complete the solution at the order O(Re), we must
next consider the steady parts of w01 and W01. From (33)
and the boundary condition (12a), we have

WðsÞ
01 ¼ ðAg3 þ Bg2Þlð1� l2Þð1þ NÞ2 ð42Þ

where A and B are unknown constants yet.
The equation for wðsÞ

01 follows by considering, as with
the energy and concentration equations, which are of
relative order (e/Re)Re. Thus, the terms O(e) in Eq. (8)
gives

� o

ot
ðD2w21Þ þ D4w01

¼ �ð1� l2ÞðL2T 21 þ NL2C21Þ cos t

þ 1

r2
owðuÞ

00

or
oD2wðuÞ

00

ol
� owðuÞ

00

ol
oD2wðuÞ

00

or

 !

þ 2

r2
D2wðuÞ

00 L1w
ðuÞ
00 ð43Þ

Because w00 / sin t, it is clear that the right-hand side
of Eq. (43) includes terms that are independent of t in
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addition to the higher harmonic cos 2t. This is also true
of the buoyancy term in Eq. (43) because the time-
dependent component of (34) and (35), namely,

oT 21

ot
¼ � 1

r2
owðuÞ

00

or
oT ðsÞ

00

ol
� owðuÞ

00

ol
oT ðsÞ

00

or

 !
ð44Þ

oC21

ot
¼ � 1

r2
owðuÞ

00

or
oCðsÞ

00

ol
� owðuÞ

00

ol
oCðsÞ

00

or

 !
ð45Þ

gives, on integration with respect to t,

T 21 ¼
1

r5
� 1

r3

� �
lð1þ NÞ cos t þ T ðsÞ

21 ðr; lÞ

C21 ¼
1

r5
� 1

r3

� �
lð1þ NÞ cos t þ CðsÞ

21 ðr; lÞ
ð46Þ

It is of interest to note that because the fluctuating
body force is non-conservative, the dominant part of
the fluctuating flow field, w00, is rotational, with the con-

sequence that the steady streaming at O(Re), namely,

wðsÞ
01 , is induced in part by the direct action of the Rey-

nolds stresses in the flow outside the Stokes shear layer.
This may be contrasted with the classical studies in
which a body vibrates in a fluid at rest, (see [16,17]),
or the fluctuating heat transfer of Merkin [18] and
Davidson [19], where the outer flow is non-rotational
and the weaker steady streaming is induced indirectly
from the action of Reynolds stresses within the Stokes
layer. This element of the steady streaming is recovered
at O(e) in this study.

If we separate the time-independent and time-depen-
dent parts of Eq. (43) we obtain an equation for wðsÞ

01 with
the solution

wðsÞ
01 ¼ A01

r2
� B01 �

1

16r
� 1

48
r

� �
lð1� l2Þð1þ NÞ2 ð47Þ

where A01 and B01 are constants. Matching the inner
and the outer solutions now gives for A01 = 1/48,
B01 = 3/48 and in (42), A = B = 0. Thus, at O(Re), we
have

wðsÞ
01 ¼ 1

48

1

r2
� 3

r
þ 3� r

� �
lð1� l2Þð1þ NÞ2;

WðsÞ
01 ¼ 0 ð48Þ

(iii) Solution at O(Re2)
At this order of Re, we only consider the equations

for the temperature and concentration in both the outer
and inner regions, where the equation

oT 02

ot
¼ 0 ð49Þ

oC02

ot
¼ 0 ð50Þ

in the outer region implies T 02 ¼ T ðsÞ
02 and C02 ¼ CðsÞ

02 , and
in the inner region the equations for I02 and U02 are
oI02

ot
� 1

2Pr
o2I02

og2
¼ 0 ð51Þ

oU02

ot
� 1

2Sc
o2U02

og2
¼ 0 ð52Þ

The equation satisfied by T ðsÞ
02 and CðsÞ

02 as at the earlier
stages, obtained when we consider the terms of relative
order O((e/Re)Re2) in Eqs. (9) and (10). Thus, the terms
O(eRe)

oT 22

ot
þ 1

r2
ow01

or
oT ðsÞ

00

ol
� ow01

ol
oT ðsÞ

00

or

 !

¼ 1

Pr
D2T ðsÞ

02 þ
2

r2
L2T

ðsÞ
02

� �
ð53Þ

oC22

ot
þ 1

r2
ow01

or
oCðsÞ

00

ol
� ow01

ol
oCðsÞ

00

or

 !

¼ 1

Sc
D2CðsÞ

02 þ
2

r2
L2C

ðsÞ
02

� �
ð54Þ

The steady part of Eqs. (53) and (54) gives the equations
for T ðsÞ

02 and CðsÞ
02 as

1

Pr
D2T ðsÞ

02 þ
2

r2
L2T

ðsÞ
02

� �

¼ 1

r2
owðsÞ

01

or
oT ðsÞ

00

ol
� owðsÞ

01

ol
oT ðsÞ

00

or

 !
ð55Þ

1

Sc
D2CðsÞ

02 þ
2

r2
L2C

ðsÞ
02

� �

¼ 1

r2
owðsÞ

01

or
oCðsÞ

00

ol
� owðsÞ

01

ol
oCðsÞ

00

or

 !
ð56Þ

whose solutions are given by

T ðsÞ
02 ¼ A02

r3
þ Pr
48

1

6r4
� 3

4r2
þ 1

6r
þ 3

5r3
ln r

� �� �
� ð1� 3l2Þð1þ NÞ2 ð57Þ

CðsÞ
02 ¼ B02

r3
þ Sc
48

1

6r4
� 3

4r2
þ 1

6r
þ 3

5r3
ln r

� �� �
� ð1� 3l2Þð1þ NÞ2 ð58Þ

where A02 and B02 are unknown constants yet.
In the inner region, the solutions for I02 and U02 are

a02(1 � 3l2)(1 + N)2 and b02(1 � 3l2)(1 + N)2 where a02
and b02 are constants, which when matched with outer
solutions (57) and (58) give a02 = b02 = 0, A02 = 5Pr/
576 and B02 = 5Sc/576, so that IðsÞ

02 ¼ UðsÞ
02 ¼ 0, and T ðsÞ

02

and CðsÞ
02 have the expressions

T ðsÞ
02 ¼ Pr

1

288r
� 1

64r2
þ 5

576r3
þ 1

80r3
ln r þ 1

288r4

� �
� ð1� 3l2Þð1þ NÞ2 ð59Þ

CðsÞ
02 ¼ Sc

1

288r
� 1

64r2
þ 5

576r3
þ 1

80r3
ln r þ 1

288r4

� �
� ð1� 3l2Þð1þ NÞ2 ð60Þ
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We notice that it is only at this stage that convective heat
transfer influences the time-independent part of the tem-
perature and concentration fields.

In terms of our expansion parameter (e/Re)1/2, the
procedure for determining the stream function, temper-
ature and concentration at O(e/Re)1/2 in both the inner
and outer regions follows a similar pattern to that
for obtaining the solutions at O(e/Re)0, which we have
described in detail above. Accordingly, the solutions
obtained at the orders O(e/Re)1/2, O((e/Re)1/2Re) and
O((e/Re)1/2Re2), respectively, are summarized below:

wðsÞ
10 ¼WðsÞ

10 ¼ T 10 ¼I
ðuÞ
10 ¼C10 ¼UðuÞ

10 ¼ 0

wðuÞ
10 ¼

ffiffiffi
2

p

2r
ð1� iÞð1�l2Þð1þNÞeit

WðuÞ
10 ¼� 1ffiffiffi

2
p ½1�ð1þ iÞg� e�ð1þiÞg� ig2�ð1�l2Þð1þNÞeit

I
ðsÞ
10 ¼UðsÞ

10 ¼�
ffiffiffi
2

p
g ð61Þ

wðuÞ
11 ¼ W11 ¼ T 11 ¼ I11 ¼ C11 ¼ U11 ¼ 0

wðsÞ
11 ¼

ffiffiffi
2

p

32
ð1� iÞ 1

r2
þ 1� 2

r

� �
lð1� l2Þð1þ NÞ2

ð62Þ

T ðuÞ
12 ¼ I

ðuÞ
12 ¼ CðuÞ

12 ¼ UðuÞ
12 ¼ 0

T ðsÞ
12 ¼

ffiffiffi
2

p
Pr

32
ð1� iÞ 1

12r3
þ 1

6r4
� 1

4r2
þ 2

5r3
ln r

� �
� ð1� 3l2Þð1þ NÞ2

CðsÞ
12 ¼

ffiffiffi
2

p
Sc

32
ð1� iÞ 1

12r3
þ 1

6r4
� 1

4r2
þ 2

5r3
ln r

� �
� ð1� 3l2Þð1þ NÞ2

I
ðsÞ
12 ¼

ffiffiffi
2

p
Pr

2880
gð1� 3l2Þð1þ NÞ2

UðsÞ
12 ¼

ffiffiffi
2

p
Sc

2880
gð1� 3l2Þð1þ NÞ2

ð63Þ

We remark that the first non-zero perturbation to the
temperature and concentration in the outer region in
Eqs. (61)–(63), namely T ðsÞ

12 and CðsÞ
12 again arises from

steady convective effects. The solutions obtained at
O(e/Re) is

wðsÞ
20 ¼ WðsÞ

20 ¼ T 20 ¼ I
ðuÞ
20 ¼ C20 ¼ UðuÞ

20 ¼ 0

I
ðsÞ
20 ¼ UðsÞ

20 ¼ 2g2

wðuÞ
20 ¼ 1

r
ð1� l2Þð1þ NÞeit

WðuÞ
20 ¼ ½�gþ ð1þ iÞg2 � ig3 þ ge�ð1þiÞg�ð1� l2Þð1þ NÞeit

ð64Þ

We have further determined the solutions at O((e/
Re)Re) and O((e/Re)Re2), respectively, but we will not
give here these solutions since their expressions are
rather long. It is, however, worth pointing out that up
to O(e/Re) the Stokes shear-wave layer had no role to
play with respect to W(s). However, the equation satisfied
by WðsÞ

21 is non-homogeneous and in particular includes a
contribution from the Reynolds stresses, which act in the
Stokes layer. In the classical studies, and earlier oscilla-
tory heat transfer studies it is the streaming induced in
the Stokes layer that is wholly responsible for the
time-independent part of motion. As we have already
noted above, the Reynolds stresses, which act in the out-
er region provide a more significant contribution to the
steady streaming in this problem.
4. Solution for Re >> 1, Pr = O(1) and Sc = O(1)

Proceeding in a similar way as for the case when
Re � 1, we can obtain equations for the functions wðsÞ

0 ,

wðuÞ
0 , T ðsÞ

0 , T ðuÞ
2 , CðsÞ

0 and CðuÞ
2 when Re� 1 in the follow-

ing form, see [15] for further details,

o

ot
ðD2wðuÞ

0 Þ ¼ ð1� l2ÞðL2T
ðsÞ
0 þ NL2C

ðsÞ
0 Þ cos t ð65Þ

1

Re
D4wðsÞ

0 � 1

r2
oðwðsÞ

0 ;D2wðsÞ
0 Þ

oðr; lÞ þ 2

r2
D2wðsÞ

0 L1w
ðsÞ
0

( )

¼ 1

r2
oðwðuÞ

0 ;D2wðuÞ
0 Þ

oðr; lÞ þ 2

r2
D2wðuÞ

0 L1w
ðuÞ
0

� ð1� l2Þ
Re

ðL2T
ðuÞ
2 þ NL2C

ðuÞ
2 Þ cos t ð66Þ

oT ðuÞ
2

ot
¼ �Re

r2
oðwðuÞ

0 ; T ðsÞ
0 Þ

oðr; lÞ ;
oCðuÞ

2

ot
¼ �Re

r2
oðwðuÞ

0 ;CðsÞ
0 Þ

oðr; lÞ
ð67Þ

1

Pr
D2T ðsÞ

0 þ 2

r2
L2T

ðsÞ
0

� �
¼ Re

r2
oðwðsÞ

0 ; T ðsÞ
0 Þ

oðr; lÞ ð68Þ

1

Sc
D2CðsÞ

0 þ 2

r2
L2C

ðsÞ
0

� �
¼ Re

r2
oðwðsÞ

0 ;CðsÞ
0 Þ

oðr; lÞ ð69Þ

It should be noticed that the right-hand side of Eq.
(66) consists of the contribution of the Reynolds-stress
and buoyancy due to thermal and concentration terms.
This is situation is in contrast to the classical one, in
which a steady streaming is induced by vibrations of a
solid body in a viscous fluid at rest or with that of free
convection from a circular cylinder whose surface tem-
perature oscillates about a mean ambient temperature
in a constant gravitational field. In these situations the
dominant fluctuating flow is non-rotational while in
the present problem this fluctuating flow is rotational.

We shall consider now the limiting case when
Re � 1, or boundary layer approximation for the steady
streaming flow. This boundary layer has the thickness
O(Re�1/2), and encompasses the much thinner Stokes
layer for Re� 1. The variables appropriate to this
boundary layer region are
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w ¼ Re�1=2wðt; l; gÞ; T ¼ Iðt; l; gÞ;

C ¼ Uðt; l; gÞ; r � 1 ¼ Re�1=2g ð70Þ

Substituting (70) into Eqs. (65)–(69) and letting
Re! 1, we obtain the following g-jitter driven bound-
ary layer equations for the corresponding functions w

ðsÞ
0 ,

w
ðuÞ
0 , I

ðsÞ
0 , U

ðsÞ
0 , I

ðuÞ
2 and U

ðuÞ
2 ,

o2w
ðuÞ
0

og2
¼ ð1� l2Þ oI

ðsÞ
0

og
þ N

oU
ðsÞ
0

og

 !
sin t ð71Þ

o4w
ðsÞ
0

og4
� oðwðsÞ

0 ; o2w
ðsÞ
0 =og2Þ

oðg; lÞ � 2l
1� l2

o2w
ðsÞ
0

og2
ow

ðsÞ
0

og

¼ oðwðuÞ
0 ; o2w

ðuÞ
0 =og2Þ

oðg; lÞ

�����
ðsÞ

þ 2l
1� l2

o2w
ðuÞ
0

og2
ow

ðuÞ
0

og

�����
ðsÞ

� ð1� l2Þ
Re

cos t
oI

ðuÞ
2

og
þ N

oU
ðuÞ
2

og

 !�����
ðsÞ

ð72Þ

oI
ðuÞ
2

ot
¼ �Re

oðwðuÞ
0 ;I

ðsÞ
0 Þ

oðg; lÞ ð73Þ

oU
ðuÞ
2

ot
¼ �Re

oðwðuÞ
0 ;U

ðsÞ
0 Þ

oðg; lÞ ð74Þ

1

Pr
oI

ðsÞ
0

og2
¼ oðwðsÞ

0 ;I
ðsÞ
0 Þ

oðg; lÞ ð75Þ

1

Sc
oU

ðsÞ
0

og2
¼ oðwðsÞ

0 ;U
ðsÞ
0 Þ

oðg; lÞ ð76Þ

To obtain an equation for the steady streaming func-

tion w
ðsÞ
0 , we eliminate w

ðuÞ
0 , I

ðuÞ
2 and U

ðuÞ
2 from Eqs. (71)–

(74) as follows. Eq. (71) is integrated twice with respect
to g to give

w
ðuÞ
0 ¼ ð1� l2Þ sin t

Z g

0

ðIðsÞ
0 ðx; lÞ þ NU

ðsÞ
0 ðx; lÞÞdx ð77Þ

Substituting this relation into Eqs. (73) and (74), fol-
lowed by an integration with respect to t, we obtain,
after some algebra,

ðcos tÞ�1
I

ðuÞ
2

¼ ð1� l2ÞIðsÞ
0

oI
ðsÞ
0

ol
þ N

oU
ðsÞ
0

ol

 !

þ 2l
oI

ðsÞ
0

og

Z g

0

ðIðsÞ
0 ðx; lÞ þ NU

ðsÞ
0 Þdx

� ð1� l2Þ oI
ðsÞ
0

og

Z g

0

oI
ðsÞ
0 ðx; lÞ
ol

þ N
oU

ðsÞ
0 ðx; lÞ
ol

 !
dx

ð78Þ
ðcos tÞ�1U
ðuÞ
2

¼ ð1� l2ÞIðsÞ
0

oI
ðsÞ
0

ol
þ N

oU
ðsÞ
0

ol

 !

þ 2l
oI

ðsÞ
0

og

Z g

0

ðIðsÞ
0 ðx; lÞ þ NU

ðsÞ
0 Þdx

� ð1� l2Þ oI
ðsÞ
0

og

Z g

0

oI
ðsÞ
0 ðx; lÞ
ol

þ N
oU

ðsÞ
0 ðx; lÞ
ol

 !
dx

ð79Þ

We now integrate Eq. (72) once with respect to g and use
Eqs. (71), (77), (78) and (79) to obtain the following
boundary layer equation for w

ðsÞ
0

o3w
ðsÞ
0

og3
� o2w

ðsÞ
0

olog
ow

ðsÞ
0

og
þ owðsÞ

0

ol
o2w

ðsÞ
0

og2
� l
1� l2

ow
ðsÞ
0

og

 !2

¼ � l
2
ð1� l2ÞfðIðsÞ

0 Þ2 þ NðUðsÞ
0 Þ2g ð80Þ

Eq. (80) for stream function w
ðsÞ
0 is to be solved together

with Eqs. (75) and (76) for the steady temperature I
ðsÞ
0

and concentration U
ðsÞ
0 subject to the following boundary

conditions

w
ðsÞ
0 ¼ ow

ðsÞ
0

og
¼ 0; I

ðsÞ
0 ¼ 1; U

ðsÞ
0 ¼ 1 on g ¼ 0

ow
ðsÞ
0

og
! 0; I

ðsÞ
0 ! 0; U

ðsÞ
0 ! 0 as g ! 1 ð81Þ

We notice again the embodiment of Reynolds stresses
and buoyancy in the effective body-force term in Eq.
(80). These terms make Eqs. (75), (76) and (80) com-
pletely different from the equations which describe the
classical problem of steady free convection from a
sphere immersed in a viscous fluid, when the buoyancy
due to the mass diffusion and g-jitter effects are absent,
see [20].

To start the numerical solution, we need to determine
initial conditions for Eqs. (75), (76) and (80). To do this,
we notice that the solution develops a singularity in the
vicinity of l = 1 (h = 0�), i.e. at the pole of the sphere.
Thus, we start the numerical solution near h = 90�, that
is, at small values of l and expand the functions w

ðsÞ
0 , I

ðsÞ
0

and U
ðsÞ
0 in the series of small l of the form

w
ðsÞ
0 ¼ lf0ðgÞ þOðl3Þ; I

ðsÞ
0 ¼ h0ðgÞ þOðl2Þ;

U
ðsÞ
0 ¼ /0ðgÞ þOðl2Þ ð82Þ

Substituting (82) into Eqs. (75), (76) and (80), we get
the following ordinary differential equations for f0, h0
and /0

f 000
0 þ f0f 00

0 � f 02
0 ¼ � 1

2
ðh20 þ N/2

0Þ

h000 þ Prf 0h
0
0 ¼ 0; /00

0 þ Scf 0/
0
0 ¼ 0

ð83Þ
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subject to the boundary conditions (81), which
become

f0ð0Þ ¼ f 0
0ð0Þ ¼ 0; h0ð0Þ ¼ 1; /0 ¼ 1

f 0
0ð1Þ ¼ 0; h0ð1Þ ¼ 0; /0ð1Þ ¼ 0

ð84Þ

where primes denote differentiation with respect to g.
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Fig. 1. Streamlines wðsÞ
01 at equal intervals at O(R
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Fig. 2. Isothermal T ðsÞ
02 at equal intervals at O(R
5. Results and discussion

The streamlines, wðsÞ
01 , of the steady flow at O(Re)

given by Eq. (48) at equal intervals for the flow region
outer to the Stokes (Re� 1) are shown in Fig. 1 for
the buoyancy ratio parameter N = 0 and �5. We noticed
from Eq. (48) that there is no flow for N = �1 because
2 2.5 3 3.5

ψ01
(s)=1x10-3 to 7x10-3 (N=-5)

ψ01
(s)=1x10-3 to 8x10-3 (N=0)

e) when Re� 1 for different values of N.
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e2) when Re� 1 for different values of N.
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the two buoyancies are equal to and opposed each other.
In addition the term (1 + N)2 in Eq. (48) takes the same
values for N = 0,1,2, . . . (assisting buoyant forces) and
N = �2,�3, . . . (opposing buoyant forces), that means,
the streamlines are the same for both assisting and
opposing thermal and concentration buoyancies. Fur-
ther, we can see from Fig. 1 that, as expected, fluid far
Table 1
Values of reduced skin friction, local heat transfer and mass transfer

h N

1 �0.5

o2w
ðsÞ
0

og2
ðh; 0Þ � oI

ðsÞ
0

og
ðh; 0Þ � oU

ðsÞ
0

og
ðh; 0Þ o2w

ðsÞ
0

og2
ðh; 0Þ � oI

ðs
0

og

90� 0.672679 0.300956 0.457824 0.290155 0.2476
88� 0.302742 0.227703 0.395910 0.120503 0.1825
86� 0.183326 0.189491 0.354036 0.102532 0.1685
84� 0.243991 0.201168 0.362918 0.116771 0.1706
82� 0.183271 0.178703 0.334290 0.097112 0.1574
80� 0.256150 0.195682 0.349191 0.118373 0.1644
78� 0.211117 0.178116 0.324737 0.105616 0.1550
76� 0.283159 0.195451 0.341107 0.127643 0.1631
74� 0.243578 0.180148 0.319041 0.117295 0.1553
72� 0.314163 0.196626 0.334866 0.139142 0.1632
70� 0.274899 0.182304 0.314348 0.128957 0.1561
65� 0.359383 0.197831 0.325560 0.156086 0.1630
60� 0.331830 0.183553 0.302086 0.149907 0.1553
45� 0.374893 0.181147 0.292872 0.158752 0.1476
30� 0.270489 0.145196 0.256060 0.113845 0.1186
20� 0.127250 0.097528 0.204888 0.070706 0.0900
10� 0.073285 0.065228 0.172621 0.028621 0.0529
5� 0.037760 0.039015 0.134740 0.013384 0.0315
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Fig. 3. Iso-concentration CðsÞ
02 at equal intervals at O
from the sphere flows inwards perpendicular to the hor-
izontal axis of the sphere and then outwards along its
axis. Isotherms, T ðsÞ

02 , and iso-concentration lines, CðsÞ
02 ,

given by Eqs. (59) and (60) at O(Re2) are illustrated in
Figs. 2 and 3 for N = 0 and N = �5 with Pr = 0.72
(which represents air at 200 �C at 1 atm) and Sc = 1.6
(which represents benzene, see [21]). It is seen that
for Pr = 0.72 and Sc = 1.6

�1
Þ

ðh; 0Þ � oU
ðsÞ
0

og
ðh; 0Þ o2w

ðsÞ
0

og2
ðh; 0Þ � oI

ðsÞ
0

og
ðh; 0Þ � oU

ðsÞ
0

og
ðh; 0Þ

83 0.368943 0.121989 0.214096 0.311421
77 0.313540 0.082066 0.178244 0.282334
74 0.297716 0.069763 0.163782 0.268082
75 0.296854 0.063594 0.154989 0.258041
40 0.280586 0.060878 0.149658 0.250691
62 0.284592 0.060040 0.146506 0.245334
34 0.271556 0.060194 0.144400 0.240832
35 0.277277 0.061186 0.143372 0.237521
90 0.266042 0.062510 0.142762 0.234704
24 0.271667 0.063964 0.142356 0.232199
48 0.261570 0.065637 0.142167 0.229950
47 0.263462 0.068778 0.141052 0.224438
24 0.250522 0.070463 0.139033 0.218953
93 0.236269 0.066290 0.126723 0.200850
07 0.206882 0.047719 0.102842 0.176940
38 0.179576 0.029568 0.078931 0.154487
95 0.139409 0.010774 0.046468 0.120179
12 0.109184 0.003371 0.025657 0.091570
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(Re2) when Re� 1 for different values of N.
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isotherms and iso-concentration lines are displayed sym-
metrically about the horizontal and vertical axes. How-
ever, the iso-concentration lines are closer to the sphere
than the isotherms. This happens because when Pr < Sc

the thickness of the thermal boundary layer is larger
than that of the concentration boundary layer, and,
0
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Fig. 5. Variations of heat flux with h fo
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Fig. 4. Variations of skin friction with h f
therefore, the wider thermal boundary layer drives the
flow closer to the sphere.

Further, we have solved numerically the two systems
of the steady-state boundary layer Eqs. (75), (76), (80)
and (83) using a very efficient implicit finite-difference
method known as the Keller-box method as described
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in the book by Cebeci and Bradshaw [22] for the Prandtl
Pr = 0.72 and 6.0, and Schmidt numbers Sc = 1.6 and
150, and at some positions h around the sphere between
h = 0� and h = 90� when N = �1, �0.5,0 and 1. It is to
be mentioned that the values of Pr = 6.0 and Sc = 160
have also been used by Mahajan and Angirasa [23] for
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the problem of steady combined heat and mass transfer
by natural convection from a vertical flat plate. The
quantities of primary interest in the present problem
are the non-dimensional skin friction, o2w

ðsÞ
0 ðh; 0Þ=og2,

and the non-dimensional heat and mass transfer
from the surface of the sphere, �oI

ðsÞ
0 ðh; 0Þ=og and
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�oUðsÞ
0 ðh; 0Þ=og, for the steady part of the solution in-

duced by g-jitter. Some values of these quantities are gi-
ven in Table 1 for Pr = 0.72 and Sc = 1.6, and several
values of h. The results for these quantities are also
shown in Figs. 4–9. It is seen from both the table and fig-
ures that, as expected, skin friction and heat and mass
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Fig. 8. Variations of heat flux with h fo
transfer along the sphere have an oscillatory behaviour,
which is attributed due g-jitter effects. These quantities
are higher for the positive values of N (assisting buoyant
forces) then for the negative values of N (opposing
buoyant forces). However, the heat transfer para-
meter increase while the skin friction and mass transfer
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parameter decrease as both Pr and Sc increase. These
figures show, in addition, that the mass transfer de-
creases almost continuously from the value of h = 90�
to a finite value at the upper pole (h = 0�). However,
the skin friction and heat transfer parameters have min-
imum value close to h = 90� and maximum values be-
tween h = 50� and 70�. The peak of these profiles
decreases as the values of Pr and Sc increase. Further,
we notice from Figs. 4–9 that the skin friction decreases
with the increase of Pr because a higher Pr implies more
viscous fluid having a comparatively larger velocity
(momentum) boundary thickness. But the heat transfer
from the sphere increases with Pr. The physical reason
for this trend is that a higher Prandtl number fluid has
a thinner thermal boundary layer which increases the
gradient of the temperature. Consequently the surface
heat transfer from the sphere is increased as Pr in-
creases. On the other hand, the mass concentration from
the sphere decreases as both Pr and Sc numbers increase
which means that the concentration boundary layer
thickness decreases as both Pr and Sc increase. How-
ever, in these results, Sc (= 1.6 and 150) is much larger
than Pr (= 0.72 and 6.0) and hence the concentration
layer is much thinner than the thermal layer.
6. Conclusions

The method of inner and outer expansions is applied
to the problem combined heat and mass transfer from a
sphere which is subjected to a constant temperature and
concentration and is immersed in a g-jitter gravity field
with low and high Reynolds numbers and Prandtl and
Schmidt numbers of order unity. The entire flow, tem-
perature and concentration fields are determined to the
second order in the small parameter of order O(e/Re).
From the analysis we infer that the induced motion
due to g-jitter oscillation has a steady part and an un-
steady part, respectively. For Re� 1, the secondary
steady motion, or acoustic streaming, consists of a
momentum (velocity), thermal and concentration
boundary layer, and the solution of the corresponding
boundary layer equations is determined numerically
using the Keller-box method. It is found that the skin
friction increases indefinitely at the pole of the sphere
(h = 0�), while heat and mass transfer remain finite at
this point. It is worth mentioning that the solution pre-
sented here may also prove useful as a guide for more
complex g-jitter accelerations such as, for example, a
sum of Fourier harmonic components with distinct fre-
quencies and amplitudes considered by Li [3]. It is hoped
that the solution presented here, as well as in Amin [15],
will further serve as a foundation for more complex and
realistic studies of free and mixed convection flows from
bodies of other configurations and also under the influ-
ence of an external magnetic field. It will also help to
develop baselines for practical microgravity processing
system design and development.
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